

SFP+ Series

EOLP-1696-14XN MSA Series

CWDM SFP+ Single-Mode for 10G application Duplex SFP+ Transceiver 0.6~10Gb/s CPRI/OBSAI RoHS6 Compliant

Features

- Hot-Pluggable SFP+ Footprint
- 8-Wavelengths CWDM EML Transmitter from
 - 1470nm to 1610nm, with step 20nm
- 14dB Power Budget
- Duplex LC connector
- Power Dissipation (0°C to 70°C) < 1.5W</p>
- ◆ Power Dissipation (-20°C~75°C) < 1.8W
- Dispersion tolerance 800ps/nm
- Case Operation Temperature:
 Standard: 0°C to 70°C
 Extended:-20°C~75°C
- Compliant with SFF-8431 MSA
- Compliant with SFF-8432 MSA
- Compliant with SFF-8472 MSA

Applications

- 10GBASE-ER/EW
- 10G FC
- OBSAI rates 6.144 Gb/s, 3.072 Gb/s,
 1.536 Gb/s, 0.768Gb/s
- CPRI rates 10.138Gb/s ,9.830 Gb/s,
 7.373Gb/s, 6.144 Gb/s, 4.915 Gb/s,
 - 2.458 Gb/s, 1.229 Gb/s, 0.614Gb/s
- Other optical links

Ordering information

Part No.	Data Rate	Laser	Fiber	Power Budget	CDR	Interface	Temp.
EOLP-1696-14XN*(note1)	0.6Gbps to 11.3Gbps	CWDM EML	SMF	14dB	NO	LC	Standard
EOLP-1696-14XEN*(note1)	0.6Gbps to 11.3Gbps	CWDM EML	SMF	14dB	NO	LC	Extended

Note1: X refers to CWDM Wavelength range 1470nm to 1610nm, X=K~R means 1470nm to 1610nm

*The product image only for reference purpose.

CWDM* Wavelength

Band	Nomenclature	Wavelength(nm)				
Bana	Nomenciature	Min.	Тур.	Max.		
	К	1464	1470	1477.5		
S-band Short	L	1484	1490	1497.5		
Wavelength	М	1504	1510	1517.5		
	N	1524	1530	1537.5		
C-band Conventional	0	1544	1550	1557.5		
	Р	1564	1570	1577.5		
L-band Long Wavelength	Q	1584	1590	1597.5		
	R	1604	1610	1617.5		

CWDM*: 8 Wavelengths from 1470nm to 1610nm, each step 20nm.

Regulatory Compliance^{*}

Product Certificate	Certificate Number	Applicable Standard
		EN 60950-1:2006+A11+A1+A12+A2
TUV	R50135086	EN 60825-1:2014
		EN 60825-2:2004+A1+A2
UL	E317337	UL 60950-1
UL	E317337	CSA C22.2 No. 60950-1-07
EMC CE	AE 50285865 0001	EN 55022:2010
EIVIC CE	AE 30203003 0001	EN 55024:2010
FCC	WTF14F0514417E	47 CFR PART 15 OCT., 2013
FDA	/	CDRH 1040.10
ROHS	/	2011/65/EU

*The above certificate number updated to June 2014, because some certificate will be updated every year, such as FDA and ROHS. For the latest certification information, please check with Eoptolink.

Product Description

The EOLP-1696-14XN series optical transceiver is designed for fiber communications application up to 10G, which fully compliant with the specification of SFP+ MSA SFF-8431.

This module is designed for single mode fiber and operates at a nominal wavelength of CWDM wavelength. There are eight center wavelengths available from 1470nm to 1610nm, with each step 20nm. A guaranteed optical link budget of 14 dB is offered.

The module is with the SFP+ connector to allow hot plug capability. Only single 3.3V power supply is needed. The optical output can be disabled by LVTTL logic high-level input of TX_DIS. Loss of signal (RX_LOS) output is provided to indicate the loss of an input optical signal of

receiver.

This module provides digital diagnostic functions via a 2-wire serial interface as defined by the SFF-8472 specification.

Absolute Maximum Ratings

Parameter	Symbol	Min	Typical	Max	Unit
Maximum Supply Voltage 1	Vcc	-0.5		4.0	V
Storage Temperature	Ts	-40		85	°C

Recommend Operating Condition

Parameter	Sy	Symbol		Typical	Max	Units				
Case Operating	Tc	Standard	0		+70	°C				
Temperature	Ιc	Extended	-20		75	°C				
Supply Voltage	,	Vcc		3.3	3.45	V				
Supply Current	Icc (0°0	lcc (0°C to 70°C)		350	455	mA				
Supply Current	Icc (-20	°C to 75°C)		350	600	mA				
Data Rate	EOLP-1	EOLP-1696-14XN			11.3	Gbps				
Data Rate EOLP-1696-14XN 0.6 11.3 Gbps Electrical Characteristics Image: Characteristic state Image: Characteristic state Image: Characteristic state										

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max	Unit	Notes				
Transmitter										
CML Inputs(Differential)	Vin	180		1000	mVpp	1				
Input Impedance (Differential)	Zin	85	100	115	ohm					
TX_DISABLE Input Voltage – High		2		Vcc+0.3	V					
TX_DISABLE Input Voltage – Low		0		0.8	V					
TX_FAULT Output Voltage – High		2		Vcc+0.3	V					
TX_FAULT Output Voltage – Low		0		0.8	V					
	1	Red	ceiver	L						
CML Outputs (Differential)	Vout	350		700	mVpp	1				
Output Impedance (Differential)	Zout	85	100	115	ohm					
RX_LOS Output Voltage – High		2		Vcc+0.3	V					
RX_LOS Output Voltage – Low		0		0.8	V					

SFP+ Series

MOD_DEF (0:2)	VoH	2.5		V	2
	VoL	0	0.5	V	2

Notes:

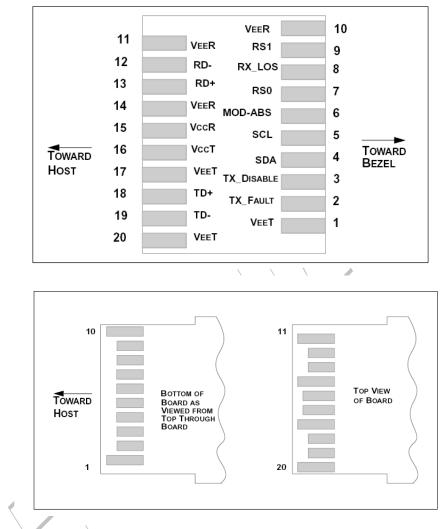
1. After internal AC coupling.

2. Reference the SFF-8472 MSA.

Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Note					
Transmitter											
Optical Wavelength	λ	λc–6	λc	λc+7.5	nm	2					
-20dB Spectrum Width	Δλ			1	nm						
Side Mode Suppression Ratio	SMSR	30			dB						
Output Opt.	Pout	-1		+4	dBm	1					
Pwr(EOLP-1696-14XN)	Poul	-1		+4	UDIII	I					
Output Opt.	Pout	-2		+4	dBm	1					
Pwr(EOLP-1696-14XEN)	FOUL	-2		+4	UDIII	1					
Extinction Ratio	ER	3.5			dB						
Average Launch Power of OFF	D			-30	dBm						
Transmitter	P_{OFF}			-30	UDIII						
Transmitter Dispersion Penalty	TDP			3	dB						
TX Jitter	ТХј	Per 802.3	Bae requirer	nents							
Relative Intensity Noise	RIN			-128	dB/Hz						
	R	eceiver									
Receiver Sensitivity	Pmin			-16	dBm	3					
Maximum Input Power	Pmax	-1			dBm						
Optical Center Wavelength	λ	1260		1620	nm						
Receiver Reflectance	Rrf			-12	dB						
LOS De-Assert	LOSD			-20	dBm						
LOS Assert	LOSA	-28			dBm						
LOS Hysteresis		1			dB						

Notes:


1. Output power is coupled into a 9/125 μm SMF.

2. ITU-T G.694.2 CWDM wavelength from 1470nm to 1610nm, each step 20nm.

3. Average received power; BER less than 1E-12 and PRBS 2³¹-1 test pattern.

SFP+ Transceiver Electrical Pad Layout

Pin Function Definitions

Pin Num.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	Note 5
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2, Module disables on high or open
4	SDA	Module Definition 2	3	2-wire Serial Interface Data Line.
5	SCL	Module Definition 1	3	2-wire Serial Interface Clock.
6	MOD-ABS	Module Definition 0	3	Note 3
7	RS0	RX Rate Select (LVTTL).	3	No Function Implement.
8	LOS	Loss of Signal	3	Note 4

SFP+ Series

9	RS1	TX Rate Select (LVTTL).	1	No Function Implement.
10	VeeR	Receiver Ground	1	Note 5
11	VeeR	Receiver Ground	1	Note 5
12	RD-	Inv. Received Data Out	3	Note 6
13	RD+	Received Data Out	3	Note 6
14	VeeR	Receiver Ground	1	Note 5
15	VccR	Receiver Power	2	3.3V ± 5%, Note 7
16	VccT	Transmitter Power	2	3.3V ± 5%, Note 7
17	VeeT	Transmitter Ground	1	Note 5
18	TD+	Transmit Data In	3	Note 8
19	TD-	Inv. Transmit Data In	3	Note 8
20	VeeT	Transmitter Ground	1	Note 5

Notes:

1) TX Fault is an open collector/drain output, which should be pulled up with a $4.7K - 10K\Omega$ resistor on the host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

2) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7K~10 K Ω resistor. Its states are:

Low (0 – 0.8V): Transmitter on (>0.8, < 2.0V): Undefined High (2.0 – 3.465V): Transmitter Disabled

Open: Transmitter Disabled

3) Module Absent, connected to VeeT or VeeR in the module.

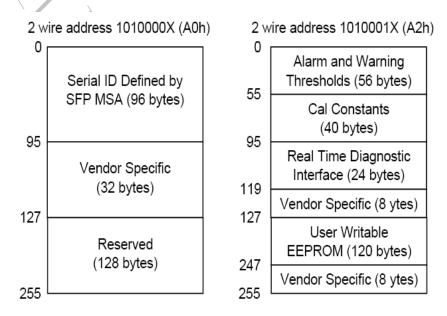
4) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a $4.7K - 10K\Omega$ resistor on host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

5) The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.

6) RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 370 and 700 Mv differential (185 –350Mv single ended) when properly terminated.

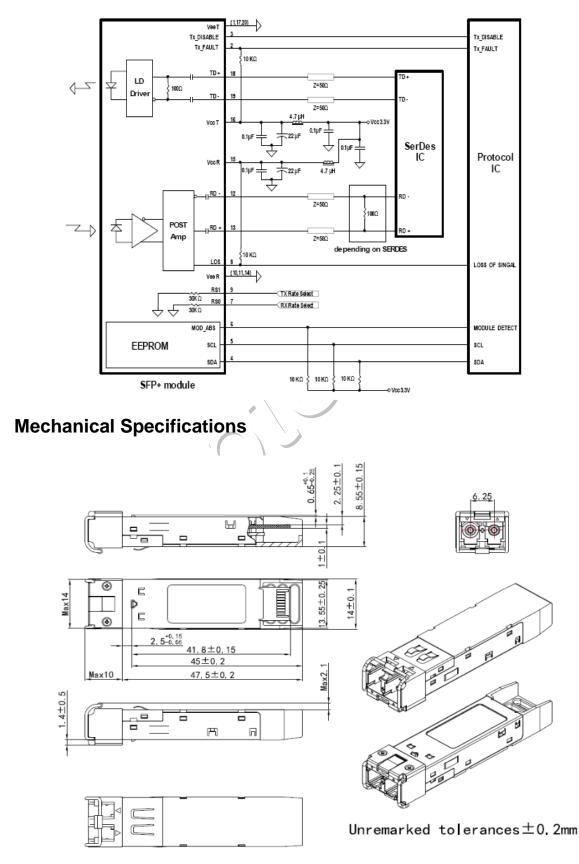
eoptolink°

SFP+ Series


7) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP+ connector pin. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP+ input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP+ transceiver module will result in an inrush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP+ transceiver module.

8) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board.

EEPROM


The serial interface uses the 2-wire serial CMOS EEPROM protocol defined for the ATMEL AT24C02/04 family of components. When the serial protocol is activated, the host generates the serial clock signal (SCL). The serial data signal (SDA) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented. If the module is defined as external calibrated, the diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 – 95 at wire serial bus address A2H. The digital diagnostic memory map specific data field define as following .For detail EEPROM information, please refer to the related document of SFF 8472 Rev 10.3.

Recommend Circuit Schematic

*This 2D drawing only for reference, please check with Eoptolink before ordering. Eoptolink Technology Inc., Ltd. Page 8 of 10

Eye Safety

This single-mode transceiver is a Class 1 laser product. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.

Obtaining Document

You can visit our website: http://www.eoptolink.com

Or contact Eoptolink Technology Inc., Ltd. Listed at the end of the documentation to get the latest documents.

Revision	Initiate	Review	Approve	Revision History	Release Date
V1.a	Alex	Kelly		New released.	July 16, 2012
V1.b	Angela	Kelly		Update mechanical spec. & power dissipation & Er & application.	July 24, 2012
V1.c	Angela	Kelly		Update photo.	July 28, 2012
V1.d	Angela	Kelly		Update Power Dissipation & Icc & Pout & Sen.	July 31, 2012
V1.e	Angela	Kelly,Fing		Update pin definition notes	Jan 24, 2013
V1.f	Abby	Kelly, Fing	Richard	Update min. output power to -1 dBm	Mar 5, 2013
V1.g	Abby	Kelly/Vina		Update Regulatory Compliance and Mechanical Specifications	Feb 3, 2015
V1.h	Angela	Vina/Fing/Jp/ Eason/Jason		Add CPRI&OBSAI application and industrial temperature range. Update max data rate and the tolerances of 2D drawing.	April 21,2015
V1.i	Angela	Kelly/Vina		Correct the 2D	July 8, 2015

Revision History

SFP+ Series

				drawing.	
				Update the max power	Dec
V1.j	Angela	Kelly/Fing/JP/Eason		dissipation and	17,2015
				regulatory compliance.	17,2010
		Kelly/Vina/Dean/		Update the CPRI data	Nov
V1.k	Angela	Chao.Wang		rates and the 2D	24,2016
		Ondo.wang		drawing.	24,2010
				Update the max power	
V2.a	Roty	Airon/Fing/JP/Eason		dissipation, Sensitivity,	Jul 19, 2017
v 2.a	TOLY	Allon/1 ing/of /Edoor		Range of output optical	50113, 2017
				power	
				Change the industrial	
				temperature to	
				extended	
				temperature,update	
V2.b	Elaine	Roty/JP/Eason		the address and the	Sep 20,
V2.5		Roty/of /Edson		contact	2017
				information, and the	
			\frown	power dissipation of	
				the extended	
				temperature	
		Kelly/Angela/Marvin/		Update the RS0/RS1	
V2.c	Elaine	Torres/Sky		Pin function definition	Mar 23,
V2.0		William/Chao.Wang		notes, the picture, 2D	2018
		winnani/Onao.wang		drawing.	

Notice:

Eoptolink reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. Eoptolink makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Contact:

Add: No.127 West Wulian Street, Gongxing Town, Shuangliu district, Chengdu City, Sichuan, China.
Tel: (+86) 028-670879999
Fax: (+86) 28-67087979-8010
Postal: 610213
E-mail:sales@eoptolink.com
http://www.eoptolink.com